

A195433


Decimal expansion of shortest length, (A), of segment from side AB through centroid to side AC in right triangle ABC with sidelengths (a,b,c)=(1,1,sqrt(2)).


3



6, 1, 4, 7, 5, 7, 2, 2, 7, 2, 3, 3, 3, 9, 0, 6, 2, 1, 5, 9, 3, 3, 1, 9, 2, 4, 8, 0, 9, 1, 1, 9, 0, 0, 9, 9, 4, 7, 1, 1, 6, 2, 5, 4, 4, 6, 2, 5, 6, 9, 8, 3, 6, 3, 8, 5, 8, 2, 6, 4, 6, 7, 2, 6, 2, 1, 6, 2, 5, 6, 1, 1, 4, 6, 1, 7, 9, 6, 2, 0, 4, 1, 6, 1, 6, 8, 8, 1, 5, 6, 9, 9, 9, 1, 9, 3, 9, 5, 0, 1
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

See A195304 for definitions and a general discussion.


LINKS

G. C. Greubel, Table of n, a(n) for n = 0..10000


EXAMPLE

(A)=0.6147572272333906215933192480911...


MATHEMATICA

a = 1; b = 1; h = 2 a/3; k = b/3;
f[t_] := (t  a)^2 + ((t  a)^2) ((a*k  b*t)/(a*h  a*t))^2
s = NSolve[D[f[t], t] == 0, t, 150]
f1 = (f[t])^(1/2) /. Part[s, 4]
RealDigits[%, 10, 100] (* (A) A195433 *)
f[t_] := (t  a)^2 + ((t  a)^2) (k/(h  t))^2
s = NSolve[D[f[t], t] == 0, t, 150]
f2 = (f[t])^(1/2) /. Part[s, 4]
RealDigits[%, 10, 100] (* (B)=(2/3)sqrt(2); 1+A179587 *)
f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h  a*t)/(b*t  a*k))^2
s = NSolve[D[f[t], t] == 0, t, 150]
f3 = (f[t])^(1/2) /. Part[s, 1]
RealDigits[%, 10, 100] (* (C) A195433 *)
c = Sqrt[a^2 + b^2]; (f1 + f2 + f3)/(a + b + c)
RealDigits[%, 10, 100] (* Philo(ABC, G) A195436 *)


CROSSREFS

Cf. A195304, A195434, A195435, A195436.
Sequence in context: A190409 A068226 A011237 * A016534 A230821 A160135
Adjacent sequences: A195430 A195431 A195432 * A195434 A195435 A195436


KEYWORD

nonn,cons


AUTHOR

Clark Kimberling, Sep 18 2011


STATUS

approved



